Stepwise Assembly of Fibrinogen Is Assisted by the Endoplasmic Reticulum Lectin-Chaperone System in HepG2 Cells
نویسندگان
چکیده
The endoplasmic reticulum (ER) plays essential roles in protein folding and assembly of secretory proteins. ER-resident molecular chaperones and related enzymes assist in protein maturation by co-operated interactions and modifications. However, the folding/assembly of multimeric proteins is not well understood. Here, we show that the maturation of fibrinogen, a hexameric secretory protein (two trimers from α, β and γ subunits), occurs in a stepwise manner. The αγ complex, a precursor for the trimer, is retained in the ER by lectin-like chaperones, and the β subunit is incorporated into the αγ complex immediately after translation. ERp57, a protein disulfide isomerase homologue, is involved in the hexamer formation from two trimers. Our results indicate that the fibrinogen hexamer is formed sequentially, rather than simultaneously, using kinetic pause by lectin chaperones. This study provides a novel insight into the assembly of most abundant multi-subunit secretory proteins.
منابع مشابه
Identification of B @ Chain Domains Involved in Human Fibrinogen
Fibrinogen chains are assembled in a stepwise manner in the rough endoplasmic reticulum prior to secretion of the final six-chain dimeric molecule. Previous studies indicated that the synthesis of BB may be a rate-limiting factor in the assembly of human fibrinogen. To determine the domains of BO which interact with the other two component chains of fibrinogen, deletion mutants of BB were trans...
متن کاملRetraction for Lectin-deficient Calreticulin Retains Full Functionality as a Chaperone for Class I Histocompatibility Molecules
Calreticulin is a molecular chaperone of the endoplasmic reticulum that uses both a lectin site specific for Glc(1)Man(5-9)GlcNAc(2) oligosaccharides and a polypeptide binding site to interact with nascent glycoproteins. The latter mode of substrate recognition is controversial. To examine the relevance of polypeptide binding to protein folding in living cells, we prepared lectin-deficient muta...
متن کاملMonitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells.
The folding environment in the endoplasmic reticulum (ER) depends on multiple abundant chaperones that function together to accommodate a range of substrates. The ways in which substrate engagement shapes either specific chaperone dynamics or general ER attributes in vivo remain unknown. In this study, we have evaluated how changes in substrate flux through the ER influence the diffusion of bot...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملThe cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system.
The maturation of eukaryotic secretory cargo initiates cotranslationally and cotranslocationally as the polypeptide chain emerges into the endoplasmic reticulum lumen. Here, we characterized the cotranslational maturation pathway for the human type I membrane glycoprotein tyrosinase. To recapitulate the cotranslational events, including glycosylation, signal sequence cleavage, chaperone binding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013